2 00 9 k - fold sums from a set with few products Dedicated to the memory of György Elekes Ernie Croot Derrick Hart

نویسندگان

  • György Elekes
  • Ernie Croot
  • Derrick Hart
چکیده

Before we state our main theorems, we begin with some notation: given a finite subset A of some commutative ring, we let A + A denote the set of sums a + b, where a, b ∈ A; and, we let A.A denote the set of products ab, a, b ∈ A. When three or more sums or products are used, we let kA denote the k-fold sumset A+A+ · · ·+A, and let A denote the k-fold product set A.A...A. Lastly, by d ∗ A we mean the set A dilated by the scalar d, which is just the set da, a ∈ A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 00 9 k - fold sums from a set with few products Dedicated to the memory of György Elekes Ernie Croot

Before we state our main theorems, we begin with some notation: given a finite subset A of some commutative ring, we let A + A denote the set of sums a + b, where a, b ∈ A; and, we let A.A denote the set of products ab, a, b ∈ A. When three or more sums or products are used, we let kA denote the k-fold sumset A+A+ · · ·+A, and let A denote the k-fold product set A.A...A. Lastly, by d ∗ A we mea...

متن کامل

2 00 9 k - fold sums from a set with few products Dedicated to the memory of György Elekes Ernie

Before we state our main theorems, we begin with some notation: given a finite subset A of some commutative ring, we let A + A denote the set of sums a + b, where a, b ∈ A; and, we let A.A denote the set of products ab, a, b ∈ A. When three or more sums or products are used, we let kA denote the k-fold sumset A+A+ · · ·+A, and let A denote the k-fold product set A.A...A. Lastly, by d ∗ A we mea...

متن کامل

2 00 9 k - fold sums from a set with few products Dedicated to the memory of György Elekes

Before we state our main theorems, we begin with some notation: given a finite subset A of some commutative ring, we let A + A denote the set of sums a + b, where a, b ∈ A; and, we let A.A denote the set of products ab, a, b ∈ A. When three or more sums or products are used, we let kA denote the k-fold sumset A+A+ · · ·+A, and let A denote the k-fold product set A.A...A. Lastly, by d ∗ A we mea...

متن کامل

h-Fold Sums from a Set with Few Products

Before we state our main theorems, we begin with some notation: given a finite subset A of some commutative ring, we let A + A denote the set of sums a + b, where a, b ∈ A; and, we let A.A denote the set of products ab, a, b ∈ A. When three or more sums or products are used, we let kA denote the k-fold sumset A+A+ · · ·+A, and let A denote the k-fold product set A.A...A. Lastly, by d ∗ A we mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009